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2 STEPHEN J. WRIGHTFor notational convenience, we often omit transpose notation and write � = (�B; �N )and (z; �) = (z; �B; �N ).In this article, we assume that for at least one of the points (z�; ��) satisfying the�rst-order conditions (3), we have ��B > 0;(6)that is, strict complementarity holds. Since gi(z�) < 0 for i 2 N (by the de�nition(4)), we have from (3) that ��N = 0 for all �� that satisfy (3). We also assume thefollowing second-order su�cient condition: For any �� such that (z�; ��) satis�es theKKT conditions (3), the two-sided projection of the Lagrangian Hessian Lzz(z�; ��)onto kerDgB(z�) is positive de�nite. That is, there is a � > 0 such thatwTLzz(z�; ��)w � �kwk2;(7) for all �� such that (z�; ��) satis�es (3), and all w 2 kerDgB(z�):Finally, we assume that the Mangasarian-Fromovitz [8] constraint quali�cation (MFCQ)holds at z�. That is, DgB(z�)�y < 0 for some �y 2 IRn:(8)This assumption is weaker than the linear independence constraint quali�cation, whichassumes that DgB(z�) has full row rank and which is frequently used in the localconvergence analysis of algorithms for nonlinear programming.We use S to denote the primal-dual solution set whose z-component is z�, thatis, S = f(z�; ��) j�� satis�es (3)g:(9)Since Lz(z�; �) is linear in �, it follows immediately that S is convex. We use S� todenote the set of optimal Lagrange multipliers for z�, that is,S� = f�� j (z�; ��) 2 Sg:(10)In the best-known form of the SQP algorithm, the step �z is obtained by solvingthe following subproblem:min�z �zTD�(z) + 12�zTLzz(z; �)�z; subject to g(z) +Dg(z)�z � 0,(11)where (z; �) is the current primal-dual iterate. Denoting the Lagrange multipliers forthe constraints in (11) by �+, we see that the solution �z satis�es the following KKTconditions (cf. (3)): Lzz(z; �)�z +D�(z) +Dg(z)T �+ = 0;(12a) g(z) +Dg(z)�z � 0;(12b) �+ � 0;(12c) (�+)T [g(z) +Dg(z)�z] = 0:(12d)We can derive the subproblem (11) and the KKT conditions (12) from the followingmin-max problem involving the Lagrangian of (11):min�z max�+�0 �zTD�(z) + 12�zTLzz(z; �)�z + (�+)T (g(z) +Dg(z)�z) :



A STABILIZED SQP METHOD 3Most practical implementations of SQP perform a line search either along theprimal space in the direction �z or in the primal-dual space in the direction (�z; �+��), with the aim of improving the value of some merit function. When (z; �) issu�ciently close to the primal-dual solution set S, these globalization strategies shouldallow unit steps to be taken to yield rapid convergence; that is,(z; �) (z +�z; �+):Under the conditions discussed above, the subproblem (11) has a local solution �zwhen (z; �) is su�ciently close to S. (For a proof of this statement, see Theorem 4.3and Section 5 of Robinson [11].) However, the Lagrange multiplier �+ for the linearconstraints in (11) may not be uniquely determined by (11) because of rank de�ciencyin the Jacobian DgB(z), so that the Hessian Lzz may not be uniquely de�ned atthe next iteration of SQP. More important, SQP may no longer yield a \quadratic"decrease in distance to the solution set S, even from points that are arbitrarily closeto this set. We illustrate this fact with the following example.Example: Consider the problemmin z1 subject to (z1 � 2)2 + z22 � 4;(z1 � 4)2 + z22 � 16;(13)which has a unique minimizer at z� = 0 at which both constraints are active andMFCQ is satis�ed. The optimal multiplier set is de�ned byS� = f(1=4� 2�; �) j 0 � � � 1=8g:Given a primal-dual point (z; �), the quantities needed to de�ne the SQP subproblem(11) are as follows:D�(z) = � 10 � ; Lzz(z; �) = 2(�1 + �2) � 1 00 1 � ;g(z) = � (z1 � 2)2 + z22 � 4(z1 � 4)2 + z22 � 16 � ; Dg(z) = 2 � (z1 � 2) z2(z1 � 4) z2 � :Suppose we apply SQP from the point z = (�; �), � � 0, where � is small andpositive. Note that kz � z�k = p2�. It can be shown that the solution �z of (11)satis�es the following linear system:24 2(�1 + �2) 0 2(�� 4)0 2(�1 + �2) 2��2(�� 4) �2� 0 3524 �z1�z2�+2 35 = 24 �102�2 � 8� 35 ;where �+2 is the Lagrange multiplier for the second linearized constraint in (11). (The�rst constraint is inactive.) By solving this system we obtain�z1 = ��8� �(2� 1=4(�1 + �2)) + O(�2)8� 2�+ O(�2) = ��+ O(�2);�+2 = �12(�� 4) + O(�) = 1=8 +O(�);�z2 = � ��+2�1 + �2 = � �8(�1 + �2) +O(�2):



4 STEPHEN J. WRIGHTIf � = (1=4; 0)|an optimal multiplier for (13)|we have�z = (��;��=2) + O(�2);and therefore k(z +�z)� z�k = k(O(�2); �=2 +O(�2))k = �=2 + O(�2);giving just a \linear" decrease in the distance to the primal optimum z� on thisiteration, even for � arbitrarily small. The new primal-dual iterate (z + �z; �+) isalso only linearly closer to S than is (z; �). In fact, a linear decrease is obtained when� is any optimal multiplier for (13), unless it happens to be close to the extreme point(0; 1=8) of S�.We now describe a stabilized variant of SQP for which a quadratic improvementin the error is guaranteed whenever (z; �) is su�ciently close to a certain large subsetof the the primal-dual solution set S|a subset that encompasses most of the relativeinterior of S. Iterates of the stabilized SQP algorithm are obtained by solving thefollowing min-max problem for (�z; �+):min�z max�+�0 �zTD�(z) + 12�zTLzz(z; �)�z+(�+)T (g(z) +Dg(z)�z) � 12�k�+ � �k2;(14)where the parameter � is de�ned as� = �(z; �) def= 

(Lz(z; �); g(z)+; �T g(z))

 :(15)Note that (14) di�ers from the standard min-max formulation only in the inclusion ofthe proximal penalty term 12�k�+ � �k2. The optimality conditions for a candidatesolution (�z; �+) of (14) are likewise similar to (12), namely,Lzz(z; �)�z +D�(z) +Dg(z)T �+ = 0;(16a) g(z) +Dg(z)�z � �(�+ � �) � 0;(16b) �+ � 0;(16c) (�+)T �g(z) +Dg(z)�z � �(�+ � �)� = 0:(16d)We show later that for (z; �) su�ciently close to some strictly complementary primal-dual solution (z�; ��), there is a unique solution (�z; �+) of (16) for which k(�z; �+��)k = O(�). This solution satis�es the following linear system:� Lzz(z; �) DgB(z)T�DgB(z) �I � � �z�+B � �B � = � �D�(z) �DgB(z)T�BgB(z) � ;(17) �+N = 0:In Section 3, we show that the norm of the stabilized SQP step is small; in fact,k(�z; �+ � �)k approaches zero at the same rate as �, while other possible solutions(�z; �+) to (14), if they exist, cannot satisfy this estimate. These observations holdeven if the active constraint Jacobian DgB(�) is rank de�cient at or near the solutionz�. We show in Section 4 that a full step along the direction produces a \quadratic"decrease in � and in the distance to the solution set and that local quadratic conver-gence follows as a consequence. Our analysis has much in common with the analysis



A STABILIZED SQP METHOD 5of Ralph and Wright [9, 10], who deal with an interior-point algorithm rather thanan SQP-based algorithm. Our focus on the SQP algorithm has practical signi�cancebecause of the popularity of this method and because full rank of the active constraintJacobian is frequently violated (or nearly so) on large-scale problems.We consider, too, the e�ects of �nite-precision 
oating-point arithmetic on thestep obtained from (17). While the errors in some components of the stabilized SQPsteps may grow quite large near the solution, rapid convergence is still attained. Ouranalysis of the 
oating-point case follows easily from the exact analysis because weuse the tools of linear algebra in proving our results.Our conclusions extend to the case in which equality constraints are explicitlypresent, as we outline in Section 5.2. Assumptions, Preliminary Results, and Notation. Throughout the re-mainder of the article, we make the following assumption.Assumption 1. The vector z� is a local solution of (1) and the functions �(�)and g(�) are twice Lipschitz continuously di�erentiable in an open neighborhood of z�.The �rst-order conditions (3) and the second-order condition (7) are satis�ed at z�,and the strict complementarity condition (6) holds for some vector �� for which (3)are satis�ed.Assumption 1 and the MFCQ (8) lead to two preliminary results that have ap-peared in previous work, as noted below.Lemma 2.1. (Gauvin [5]) Suppose that Assumption 1 holds. Then S� is boundedif and only if the MFCQ (8) is satis�ed.A proof of the following result can be found in Bertsekas [1, Proposition 3.3.2],for example.Lemma 2.2. If Assumption 1 holds, then z� is a locally unique solution of (1).Given the de�nition (9) of S and Lemma 2.2, we de�ne the constant � as follows:� = max��2S� mini2B ��i :(18)Assumption 1 implies that � is positive, while Lemma 2.1 implies that it is bounded.For each 
 2 (0; 1), we de�ne N 
 (�) byN 
(�) = f(z; �) j k(z; �)� (z�; ��)k � �(19) for some �� 2 S� with ��B � 
�e, and � � 0g:From Lemma 2.1, the set S is compact, so by the de�nition (18), the set f(z�; ��) 2S j��B � 
�eg is nonempty and compact also for each 
 2 (0; 1).In the remainder of the article, we assume that the following collection of assump-tions is satis�ed.Standing Assumptions: We assume that Assumption 1 holds and thatthe MFCQ (8) is satis�ed. We assume, too, that 
 used to de�ne (19)is a �xed constant in the range (0; 1).We conclude this section with some items of notation to be used in subsequentsections. We de�ne integers �m and �m by�m = jBj; �m = rankDgB(z�);(20)so that 0 � �m � �m � m. Since Lemma 2.1 implies boundedness of S�, there is aconstant �� > 0 such thatkLzz(z�; ��)k � ��; for all �� 2 S�:(21)



6 STEPHEN J. WRIGHTFor convenience, we assume that the problem is scaled so that �� and kDg(z�)k arenot too much di�erent from 1.The distance to a set T is de�ned asdist (w; T ) = inf f kw �w�k jw� 2 T g:We use P (�) to denote projection onto the set of optimal Lagrange multipliers, thatis, P (�) = arg min��2S� k�� � �k:Given two continuous functions  1(�) and  2(�) that map some Euclidean spaceto [0;1), we say that  1(x) = O( 2(x)) if there is a constant � > 0 and a moderateconstant C� > 0 such that 2(x) 2 [0; �] )  1(x) � C� 2(x):We say that  1(x) = 
( 2(x)) if both  1(x) = O( 2(x)) and  2(x) = O( 1(x)).We use k � k to denote the Euclidean norm of a matrix or vector, and �(M ) =kMk kM�1k to denote the condition number of a nonsingular matrix with respect tothis norm.Finally, we mention that when functions such as gB, Lz, and Lzz appear withoutspeci�c arguments, the arguments are understood to be the current points z or (z; �),as appropriate.3. Step Size Estimates. In this section, we show that the step calculated fromany point (z; �) 2 N 
(�) via (17) in exact arithmetic satis�es the estimate(�z;��B) def= (�z; �+B � �B) = O(�);(22)while any other local solution of (16) cannot satisfy this estimate. We also discussthe e�ect of �nite-precision 
oating-point arithmetic on this estimate.Our �rst result shows that � de�ned in (15) is closely related to the distance fromthe current point to the solution set S.Lemma 3.1. Suppose that the standing assumptions hold. Then there is a con-stant � > 0 such that for all (z; �) 2 N 
(�) we havedist ((z; �);S) = 
(�):(23)Proof. We show �rst that � = O(dist ((z; �);S)). Let (z�; P (�)) be the projectionof (z; �) onto the (compact) solution set S, so thatk(z; �)� (z�; P (�))k = dist ((z; �);S):By the optimality condition (3) and Assumption 1, we havekLz(z; �)k = kLz(z; �) �Lz(z�; P (�))k = O(dist ((z; �);S)):(24)Similarly, we havekg(z)+k = kg(z)+ � g(z�)+k � kg(z) � g(z�)k = O(dist ((z; �);S)):(25)



A STABILIZED SQP METHOD 7By boundedness of S, we have that P (�) is bounded by a constant independent of �.Hence, we can write�Tg(z)= �Tg(z) � P (�)T g(z�)= [�� P (�)]T [g(z)� g(z�)] + P (�)T [g(z) � g(z�)] + [�� P (�)]Tg(z�)= O(dist ((z; �);S)):(26)We obtain the result by substituting (24), (25), and (26) into (15).The proof of reverse estimate|dist ((z; �);S) = O(�)|follows the proof of [9,Lemma 5.5] closely. The condition (z; �) 2 N 
 (�) is important in deriving this es-timate; that is, the � component should be close to a \su�ciently strictly comple-mentary" point in S� rather than near some extreme point of this set. We omit thedetails and refer the reader to the earlier paper.To analyze the step (�z;��B), we decompose it to conform with the singularvalue decomposition (svd) of the optimal Jacobian DgB(z�). From the de�nitions (4)and (20), this matrix has dimensions �m� n and rank �m. We write its svd asDgB(z�) = � U V � � S 00 0 � � ÛTV̂ T � ;(27)where S is diagonal with diagonal elements �1 � � � � � � �m > 0;� U V � and � Û V̂ � are orthogonal;U is �m � �m, V is �m � ( �m � �m), Û is n� �m, and V̂ is n� (n� �m).Note, in particular, that the columns of V̂ constitute an orthonormal basis for kerDgB(z�).3.1. Exact Arithmetic. We �rst analyze the step (�z;��B) obtained by solv-ing (17), assuming exact arithmetic. We decompose this step as�z = ÛyÛ + V̂ yV̂ ;(28a) ��B = �+B � �B = UwU + V wV :(28b)By substituting (28) into (17) and premultiplying the blocks of this system by thematrices ÛT , V̂ T , UT , and V T , we obtain2664 ÛTLzzÛ ÛTLzzV̂ ÛT (DgB)TU ÛT (DgB)TVV̂ TLzzÛ V̂ TLzzV̂ V̂ T (DgB)TU V̂ T (DgB)TV�UT (DgB)Û �UT (DgB)V̂ �I 0�V T (DgB)Û �V T (DgB)V̂ 0 �I 37752664 yÛyV̂wUwV 3775 = 2664 rÛrV̂rUrV 3775 ;(29)where the right-hand side is2664 rÛrV̂rUrV 3775 = 2664 �ÛT (D� +DgTB�B)�V̂ T (D�+DgTB�B)UT gBV T gB 3775 :(30)



8 STEPHEN J. WRIGHTSince DgB(z) �DgB(z�) = O(kz � z�k) = O(�);by Assumption 1 and Lemma 3.1, we have from (27) thatUTDgB(z)Û = S + O(�);(31a) UTDgB(z)V̂ = O(�);(31b) V TDgB(z)Û = O(�);(31c) V TDgB(z)V̂ = O(�):(31d)Meanwhile, by the second-order condition (7) and orthonormality of V̂ , we have thatthe matrix V̂ TLzz(z�; ��)V̂ satis�esvT V̂ TLzz(z�; ��)V̂ v � �kvk2;(32)for all v 2 IRn� �m, all �� 2 S�, and some � > 0 independent of v and ��.By substituting the estimates (31) into (29), we obtain2664 ÛTLzzÛ ÛTLzzV̂ S + O(�) O(�)V̂ TLzzÛ V̂ TLzzV̂ O(�) O(�)�S +O(�) O(�) �I 0O(�) O(�) 0 �I 37752664 yÛyV̂wUwV 3775 = 2664 rÛrV̂rUrV 3775 :(33)By eliminating wV from this system and rearranging the resulting block 3� 3 coe�-cient matrix, we obtain wV = ��1rV + O(kyÛk) +O(kyV̂ k)(34)and24 S + O(�) ÛTLzzV̂ + O(�) ÛTLzzÛ +O(�)O(�) V̂ TLzzV̂ +O(�) V̂ TLzzÛ + O(�)�I O(�) �S +O(�) 3524 wUyV̂yÛ 35 = 24 rÛ +O(krV k)rV̂ + O(krV k)rU 35 :(35)(Note that elimination of wV has introduced O(�) perturbations into the Lzz blocks.)The coe�cient matrix in (35) is an O(�) perturbation of the block upper triangularmatrixM (z; �) de�ned byM (z; �) = 24 S ÛTLzzV̂ ÛTLzzÛ0 V̂ TLzzV̂ V̂ TLzzÛ0 0 �S 35 ;(36)whose condition number can be bounded independently of (z; �) for all (z; �) 2 N 
(�)for � su�ciently small. To verify this claim, note �rst that the above-diagonal blocksare bounded in norm by kLzzk which, by (21), Assumption 1, and Lemma 3.1, satis�esthe bound kLzz(z; �)k � kLzz(z�; P (�))k+O (k(z; �)� (z�; P (�))k)� �� + O(�)� 2��;(37)



A STABILIZED SQP METHOD 9for a su�ciently small choice of �. By decreasing � further if necessary, we have byapplying (32), Assumption 1, and Lemma 3.1 thatvT V̂ TLzz(z; �)V̂ v = vT V̂ TLzz(z�; P (�))V̂ v +O(�)kvk2 � (�=2)kvk2;for all v 2 IRn�(n��m). Hence, using (37) again, we obtain�(V̂ TLzzV̂ ) = kV̂ TLzzV̂ k k[V̂ TLzzV̂ ]�1k � 4(��=�):(38)The other diagonal blocks in (36) are also well conditioned, since by the de�nition ofS we have �(S) = kSk kS�1k = �1=� �m:(39)Since M (z; �)�1 = 24 S�1 M12 M130 [V̂ TLzzV̂ ]�1 M230 0 �S�1 35 ;where M12 = �S�1(ÛTLzzV̂ )(V̂ TLzzV̂ )�1;M23 = (V̂ TLzzV̂ )�1(V̂ TLzzÛ )S�1;M13 = S�1 h�(ÛTLzzV̂ )M23 + (ÛTLzzÛ )S�1i ;it is easy to see from (37), (38), and (39) that, for a su�ciently small choice of �, thequantities kM (z; �)�1k and �(M (z; �)) are bounded for all (z; �) 2 N 
(�). That is,we can de�ne a constant CM such thatkM (z; �)�1k � CM ; �(M (z; �)) � CM ; for all (z; �) 2 N 
(�):Using (36), we rewrite (35) as[M (z; �) + O(�)]24 wUyV̂yÛ 35 = 24 rÛ + O(krV k)rÛ + O(krV k)rU 35 :(40)By decreasing � if necessary, we can ensure nonsingularity of the coe�cient matrixand in fact that 


[M (z; �) + O(�)]�1


 � 2kM (z; �)�1k � 2CM :Hence, we have immediately from (40) thatk(wU ; yV̂ ; yÛ)k = O �k(rÛ ; rV̂ ; rU ; rV )k� :(41)It follows by substitution in (34) thatkwV k = O(��1)krV k+ O �k(rÛ ; rV̂ ; rU)k� :(42)We obtain the estimate (22) for (�z;��B) by using the de�nition of the right-hand side in (30). We havek(rÛ ; rV̂ )k = kD�(z) +DgB(z)T�Bk � kLz(z; �)k+ kDgN (z)kk�N k:



10 STEPHEN J. WRIGHTFrom the de�nition (15), we have directly that kLz(z; �)k � �. By compactness ofN 
(�) and smoothness of Dg(�), we have that kDgN (z)k is bounded above, while for(z; �) 2 N 
 (�) we have from Lemma 3.1 that k�N k � dist ((z; �);S) = O(�). Weconclude that k(rÛ ; rV̂ )k = O(�):(43)Since gB(z�) = 0, we have from Assumption 1 and Lemma 3.1 thatkrUk = kUT gB(z)k � kgB(z) � gB(z�)k = O(kz � z�k) = O(�):(44)The remaining estimate is slightly more re�ned. By Assumption 1 and Lemma 3.1,we have rV = V T gB(z)(45) = V T [gB(z�) +DgB(z�)(z � z�)] + O(kz � z�k2)= O(�2);since gB(z�) = 0 and V TDgB(z�) = 0 by (27). Substitution of (43), (44), and (45)into (41) and (42) yields k(yÛ ; yV̂ ; wU ; wV )k = O(�):The estimate (22) follows immediately from (28).We summarize this result as a theorem.Theorem 3.2. Suppose that the standing assumptions hold. Then there is aconstant � > 0 such that for all (z; �) 2 N 
 (�), the solution (�z; �+) of (17) satis�esthe estimate k(�z; �+ � �)k � C0�;(46)for some C 0 > 0 that depends on 
 and � but not on � or (z; �).Proof. We have shown above that (22) holds. It remains only to examine theN -components of �+ and �. Since ��N = 0 for all �� 2 S�, we havek�N � �+N k = k�N k � dist ((z; �);S) = O(�):It is not di�cult to show that the solution (�z; �+) of (17) is the only localsolution of (16) satisfying the estimate (46). Let (c�z; �̂+) be any solution of (16)that satis�es (46). If there is an index i for which i =2 N but �̂+i = 0, we have bythe de�nition (19) and (z; �) 2 N 
(�) that �i � 
� � �. Hence, by choosing � smallerthan 
�=2, we have that k�� �̂+k � j�i � �̂ij � 
�=2;for this particular index i. Hence, each i =2 N must have �̂+i > 0.If, on the other hand, there is an index i 2 N for which �̂+i > 0, by complemen-tarity and equation (12b) we havegi(z) +Dgi(z)c�z � �(�̂+i � �i) = 0:



A STABILIZED SQP METHOD 11If the estimate k(c�z; �̂+i � �i)k = O(�) holds (as assumed), this equation yieldsgi(z) = O(�). However, Lemma 3.1 and gi(z�) < 0 imply that gi(z) is bounded awayfrom zero for � su�ciently small, giving a contradiction.We conclude from these two cases that i 2 N if and only if �̂+i = 0, so that theindex partition for the solution (c�z; �̂+) is simply B[N . Since the coe�cient matrixin (17) is nonsingular, we must have (c�z; �̂+) = (�z; �+).3.2. Finite-PrecisionArithmetic. We now examine the e�ect of �nite-precision
oating-point arithmetic on the step calculated from (17). In our discussion of
oating-point arithmetic, we use u to denote unit roundo�, which we de�ne by thefollowing statement: When x and y are any two 
oating-point numbers, op denotes+;�;�, or =, and 
(z) denotes the 
oating-point approximation of any real numberz, we have 
(x opy) = (x opy)(1 + �); j�j � u:We also introduce the unfamiliar notation �u to represent a scalar quantity that is amodest multiple of u.In solving (17), errors due to 
oating-point arithmetic arise from two sources:a. Error incurred during the evaluation of the components of the matrix and theright-hand side, andb. Error incurred during factorization of the matrix in (17) and the subsequenttriangular substitutions.We consider (a) �rst. The quantities on the right-hand side|D�(z)+DgB(z)T�Band gB(z)|are O(�) in exact arithmetic. However, they are typically evaluated byadding and subtracting quantities whose size is independent of �, and hence theycontain evaluation errors of size �u. Of all 
oating-point errors, these are the mostsigni�cant in their e�ect on the accuracy of the step and on the algorithm's conver-gence behavior. We assume that �� u;(47)since, if not, the perturbed right-hand side may bear no relation to the exact version,so we could not expect any similarity between the perturbed solution and its exactcounterpart.Evaluation errors may also appear in the blocks of the coe�cient matrix in(17), except for the (2; 2) block �I. Since we have assumed for convenience thatkLzz(z�; ��)k and DgB(z�) are not too di�erent from 1, these errors can be accountedfor by introducing perturbations of size �u into the (1; 1), (1; 2), and (2; 1) blocks ofthe matrix in (17).In assessing the errors that arise from cause (b), we assume that the matrix isfactored by a stable procedure, one in which the elements of the submatrices thatarise during the factorization are not too large relative to the norm of the originalmatrix. Suitable algorithms could include Gaussian elimination with pivoting or aBunch-Parlett or Bunch-Kaufman algorithm applied to a symmetric inde�nite refor-mulation of the problem. (See, for example, Fourer and Mehrotra [4] and Wright [12]for a discussion of algorithms for symmetric inde�nite matrices and their stabilityproperties.) A standard backward error analysis applied to the general square systemMx = r shows that the approximate solution x̂ computed by stable factorization andtriangular substitutions satis�es(M + EM)x̂ = r; where kEMk � �ukMk



12 STEPHEN J. WRIGHT(see for example Golub and Van Loan [6, Chapter 3]). The e�ects of the errors of type(b) can be accounted for by introducing perturbations of size �u into all the elementsof the matrix in (17).Collating these errors, we �nd that the computed approximation ( ~�z; ~��B) tothe step (�z;��B) satis�es the equation�� Lzz(z; �) DgB(z)T�DgB(z) �I �+ �E�� ~�z~��B � = � �Lz(z; �)gB(z) � + �e;(48)where k �Ek � �u; k�ek � �u:(49)By decomposing the approximate step as~�z = Û ~yÛ + V̂ ~yV̂ ; ~��B = U ~wU + V ~wV ;(50)and partitioning the system as in (33), we obtain8>><>>:2664 ÛTLzzÛ ÛTLzzV̂ S +O(�) O(�)V̂ TLzzÛ V̂ TLzzV̂ O(�) O(�)�S + O(�) O(�) �I 0O(�) O(�) 0 �I 3775+E9>>=>>;2664 ~yÛ~yV̂~wU~wV 3775(51) = 2664 rÛ + eÛrV̂ + eV̂rU + eUrV + eV 3775 ;where the norms of E, eÛ , eV̂ , eU , and eV all have size �u. From the last block rowwe obtain~wV = [�I + EVV ]�1 �rV + eV + (O(�) + �u)(k~yÛk+ k~yV̂ k) + �uk ~wUk� ;(52)where EV V is the lower right block of E. We use the condition (47) and the estimatekEk = �u to deduce that[�I + EVV ]�1 = �I + ��1EV V ��1 ��1 = O(��1):(53)Hence, from (52) we havek ~wV k = O(��1)krV + eV k+O(1) �k~yÛk+ k~yV̂ k�+O(��1�u)k ~wUk:(54)By eliminating ~wV from (51) and using the estimate (53), we obtain8<:24 S ÛTLzzV̂ ÛTLzzÛ0 V̂ TLzzV̂ V̂ TLzzÛ0 0 �S 35+ ~E9=;24 ~wU~yV̂~yÛ 35= 24 rÛ + eÛrV̂ + eV̂rU + eU 35+ 24 O(krV + eV k)O(krV + eV k)O(��1�ukrV + eV k) 35 ;(55)where k ~Ek � O(�) + �u:



A STABILIZED SQP METHOD 13As before, we choose the neighborhood radius � small enough to ensure that the error-free part of the coe�cient matrix in (55) dominates any O(�) perturbations. Weassume, too, that u is small enough that perturbations of size �u are also dominatedby the error-free part. By applying the logic that follows equation (35), we obtain asin (41) that k( ~wU ; ~yV̂ ; ~yÛ )k is of the order of the right-hand side in (55), that is,k( ~wU ; ~yV̂ ; ~yÛ)k = O �k(rÛ + eÛ ; rV̂ + eV̂ ; rU + eU ; rV + eV )k�(56) = O(�) + �u:By using some simple manipulation involving (35) and (55), we can show further thatk( ~wU ; ~yV̂ ; ~yÛ) � (wU ; yV̂ ; yÛ)k = O(�2) + �u;(57)so that the relative accuracy of the computed step components ( ~wU ; ~yV̂ ; ~yÛ) remainshigh. (Note that these estimates hold even when � is similar in size to u, providedthat the ~E term is small enough in the sense described above.)Returning to the component ~wV , we have from (54), (45), (49), and (56) thatk ~wV k = O(�+ ��1�u):(58)Note that if we allow � � u, the matrix in (55) may be singular and the norm of ~wVcan be arbitrarily large.From the estimates (56) and (58), we conclude that �nite-precision arithmetic haslittle e�ect on the (wU ; yV̂ ; yÛ ) step components, while it has a potentially signi�cante�ect on the wV component. In fact, for � < pu, the estimate (58) indicates thatthe error in ~wV can dominate the \exact" contribution. Fortunately, as we see below,the potentially large error in this component has little e�ect on the local convergenceproperties of the algorithm.By substituting the estimates (56) and (58) into (50), we obtaink ~�zk = O(�) + �u; k ~��Bk = O(� + ��1�u):(59)4. Local Convergence. We now examine the e�ect of the exact and inexactsteps on the decrease in the optimality measure �. We show that the exact step yieldsa \quadratic" decrease in �, indicating a quadratic rate of convergence of the iterates(z; �) to the primal-dual solution set S. In �nite precision, this convergence behavioris a�ected less severely than one might expect, but we show that reduction of � belowthe level of u cannot be achieved in general and is, in any case, undesirable.Since we are interested in the asymptotic behavior, we assume that � (and hencedist ((z; �);S)) is small enough that the new iterate is obtained from (17), even when
oating-point arithmetic is used.First, we analyze the case of exact steps. Using the de�nition (2) of the LagrangianL, Taylor's theorem, Assumption 1, and �+N = 0, we �nd thatLz(z +�z; �+)= D�(z +�z) +Dg(z +�z)T�+= D�(z +�z) +DgB(z +�z)T�+B= D�(z) +D2�(z)�z + O(k�zk2) +DgB(z)T�+B+Xi2B �+i D2gi(z)�z + O(k�B +��Bk k�zk2)= Lzz(z; �)�z +DgB(z)T�+B +D�(z)+Xi2B��iD2gi(z)�z + O(k�zk2):



14 STEPHEN J. WRIGHTFrom the �rst block row of (17), the �rst three terms in this expression sum to zero,so we have from (22) thatLz(z +�z; �+) = O(k��Bk k�zk) + O(k�zk2) = O(�2):(60)For the B components of g(�), we have from the second block row in (17) and (22)that gB(z +�z) = gB(z) +DgB(z)�z +O(k�zk2)(61) = ���B +O(k�zk2)= O(�2):For the N components, since gN (z) is negative and bounded away from zero for(z; �) 2 N 
(�), we have gN (z +�z) < 0;provided that � is chosen to be su�ciently small. By combining the last two expres-sions we obtainkg(z +�z)+k = kgB(z +�z)+k � kgB(z +�z)k = O(�2):(62)For the third component in the de�nition (15) of �, we obtain from (17), (22),�+N = 0, and boundedness of S� that(�+)Tg(z +�z) = (�B +��B)TgB(z +�z)(63) = (�+B )T �gB(z) +DgB(z)�z + O(k�zk2)�= (�+B )T ����B + O(k�zk2)�= O(�k��Bk) +O(k�zk2)= O(�2):By combining the estimates above, we have the following result concerning thedecrease in � produced by a unit step.Theorem 4.1. Suppose that the standing assumptions hold. Then there is aconstant � > 0 such that for all (z; �) 2 N 
 (�), the solution (�z; �+) of (17) yields�+ def= �(z +�z; �+) � C�2;(64)for some C > 0 that depends on 
 and � but not on � or (z; �).Proof. We obtain (64) by substituting (60), (62), and (63) into the de�nition (15).The local convergence result follows as a simple corollary of Theorems 3.2 and4.1.Corollary 4.2. Suppose that the standing assumptions hold, and let � be smallenough that Theorems 3.2 and 4.1 both apply. Then if (z0; �0) is a point that satis�es(z0; �0) 2 N 
(�=2); C0�0 � �=4; C�0 � 1=2;the stabilized SQP method with unit steps converges Q-quadratically to a point (z�; ��) 2S.



A STABILIZED SQP METHOD 15Proof. The �rst step of the stabilized SQP satis�esk(�z0; �1 � �0)k � C 0�0 � �=4;so from the de�nition of N 
 (�) (19), we have(z1; �1) 2 N 
 (�=2 + �=4) = N 
(3�=4):(65)Theorem 4.1 applies, and therefore �1 � C�20 � �0=2 from (64). Because of (65),(z1; �1) satis�es the hypotheses of Theorem 3.2, so we havek(�z1; �2 � �1)k � C0�1 � C0�0=2 � �=8;and therefore (z2; �2) 2 N 
 (7�=8) and �2 � C�21 � �1=2:By repeating this argument, we �nd that (zk; �k) 2 N 
 (�) for all k. Moreover, f�kgconverges Q-quadratically to zero, and therefore, by Lemma 3.1, fdist ((zk; �k);S)galso converges Q-quadratically to zero. For any indices k and l with l > k, we havek(zk; �k)� (zl; �l)k � l�1Xj=k k(�zj; �j+1 � �j)k � C0 l�1Xj=k�j � 2C0�k ! 0;(66)as k and l approach 1, so the sequence f(zk; �k)g is Cauchy. Hence this sequencehas a single limit point (z�; ��) 2 S. We prove Q-quadratic convergence to this pointby using Lemma 3.1 and an argument like (66). We havek(zk+1; �k+1)� (z�; ��)k� 2C 0�k+1 � 2C0C�2k = O(dist ((zk; �k);S)2) = O(k(zk; �k) � (z�; ��)k2):We turn now to the case of inexact arithmetic and continue to assume that � andu satisfy �� u so that the estimates (59) apply. As in (48), we have thatLz(z + ~�z; �+ ~��) = Lz(z; �) +DgB(z)T ~��B + Lzz(z; �) ~�z(67) +O(k ~��Bk k ~�zk) + O(k ~�zk2):From (48), (49), and (59), and the estimate �� u, we obtain


Lz(z; �) +DgB(z)T ~��B + Lzz(z; �) ~�z


� �uk ~��Bk+ �uk ~�zk+ �u= �2u +O(�)�u +O(��1)�2u + �u= �u:Hence, by substituting into (67) and using (59) again, we obtainkLz(z + ~�z; �+ ~��)k = �u + O(��1)�2u +O(�2) = �u + O(�2):(68)For gB(�), we have as in (61), by using (48), (49), and (59), thatkgB(z + ~�z)k = kgB(z) +DgB(z) ~�zk+O(k ~�zk2)� �k ~��Bk+ �uk ~�zk+ �uk ~��Bk+O(k ~�zk2)= O(�2) + �u:



16 STEPHEN J. WRIGHTSince k ~�zk is small, we have by the usual argument that gN (z + ~�z) < 0. Hence, asin (62), we obtain kg(z + ~�z)+k = O(�2) + �u:(69)For the third component of �, we have as in (63), using (48), (49), and (59), that(� + ~��)T g(z + ~�z)(70) = (�B + ~��B)T h� ~��B + �uk ~�zk+ �uk ~��Bk+ �ui= O(�2) + �u:By combining (68), (69), and (70), we obtain from the de�nition (15) that�(z + ~�z; �+ ~��) = O(�2) + �u:This expression suggests that the e�ect of �nite-precision arithmetic on the con-vergence of the algorithm is not really evident until � reaches the level of pu. Belowthis threshold, the algorithm will continue to run and to converge rapidly until �reaches the level of u. (Typically, just one or two iterations su�ce to reduce � frompu to u.) However, we cannot in general reduce � below the level of u. We wouldnot want to do so in any case because, by our assumptions on evaluation error, evenan exact solution (z�; ��) may yield a � value of size �u. Our pleasing (and slightlysurprising) conclusion is that rapid local convergence to a nearly exact solution occurseven though the stabilized SQP step contains large errors.5. Equality Constraints. The algorithm can be modi�ed easily to handle thecase in which equality constraints are present explicitly in the formulation; that is,we have min �(z) subject to g(z) � 0, h(z) = 0;where h : IRn ! IRp is also smooth. The Lagrangian L is rede�ned asL(z; �; �) = �(z) + �T g(z) + �Th(z);where � 2 IRp is the vector of Lagrange multipliers for the equality constraints. Theextension of the KKT conditions to this case is well known, while the second-ordercondition now requires positive de�niteness of the Hessian Lzz(z�; ��; ��) on the sub-space ker � DgB(z�)Dh(z�) � :The appropriate extension of the Mangasarian-Fromovitz condition (8) is that Dh(�)has full row rank and thatDh(z�)�y = 0; DgB(z�)�y < 0; for some �y 2 IRn:To extend the algorithm, we �rst rede�ne � as� = �(z; �) def= 

(Lz(z; �); g(z)+; h(z); �T g(z))

 :(71)



A STABILIZED SQP METHOD 17The min-max subproblem (14) becomesmin�z max�+�0; �+ �zTD�(z) + 12�zTLzz(z; �)�z+(�+)T (h(z) +Dh(z)�z) + (�+)T (g(z) +Dg(z)�z) � 12�k�+ � �k2:(72)(No stabilization with respect to the Lagrange multipliers of the equality constraintsis needed.) Analogously to (17), we can show that for (z; �; �) su�ciently close to astrictly complementary primal-dual solution (z�; ��; ��), the solution of (72) satis�esthe following system:24 Lzz(z; �; �) DgB(z)T Dh(z)T�DgB(z) �I 0�Dh(z) 0 0 3524 �z�+B � �B�+ � � 35= 24 �D�(z) �DgB(z)T�B �Dh(z)T �gB(z)h(z) 35 ; �+N = 0:(73)The proof of Lemma 3.1 can be extended to show that � in (71) remains a goodmeasure of the distance to the solution set, for points that are su�ciently strictlycomplementary. To prove that the solution of (73) satis�es the estimate(�z; �+ � �; �+ � �) = O(�);(74)we extend the analysis of Section 3.1 by rede�ning the svd in (27) as� DgB(z�)Dh(z�) � = � U V � � S 00 0 � � ÛTV̂ T � :Because we assume full row rank of Dh(z�), we can show that V has the formV = � V10 � ; V1 2 IR�m�( �m+p� �m);that is, the last p rows of V are zero. In rewriting the system (73) analogously to(29), then, we obtain a block �I in the diagonal position corresponding to the wVcomponent|an important feature in proving the estimate kwV k = O(�). Estimatesfor the other components, and hence for the full step (74), proceed as in Section 3.1. Itis also easy to show, as in Section 4, that a unit step produces a quadratic reductionin �. As before, �nite-precision computations have little e�ect on the convergencebehavior.6. Discussion. Our superlinear convergence result rests on two assumptionsthat deserve further comment. The �rst is the MFCQ, which is used to obtain bound-edness of the optimal multiplier set (Lemma 2.1) and therefore to show that � is avalid estimate of dist ((z; �);S). We can replace MFCQ with an assumption that thealgorithm eventually generates an iterate (zk; �k) that lies inside a neighborhood ofsome bounded subset of S, where the radius � of the neighborhood depends on thebound on this subset. A step estimate like Theorem 3.2 and a local capture andconvergence result like Corollary 4.2 could then be proved. Some kind of constraintquali�cation is still required, however, because without one the KKT conditions arenot even necessary, as demonstrated by the following well-known example:min z1 subject to z2 � z31, z1 � 0:



18 STEPHEN J. WRIGHTThe second assumption concerns the requirement that the starting guess for � issu�ciently strictly complementary, that is, not too close to the boundary of the setS�. Without this assumption, it is not possible to prove, at least using techniques likethose in Lemma 3.1, that � is a measure of the distance to optimality dist ((z; �);S).Nor is it possible to apply the linear-algebra-based analysis of Section 3 withoutsigni�cant modi�cation, since it is no longer true that all indices in B are active atthe solution of the stabilized SQP subproblem (14).We can accommodate this restriction with the help of an active set identi�cationtechnique such as that of Facchinei, Fischer, and Kanzow [3]. Our algorithm can pe-riodically make an estimate of the active constraint set and then solve a subproblemto modify the current value of � to make it \more strictly complementary" withoutincreasing � by too much. If dist ((z; �);S) is small enough that B is identi�ed cor-rectly, a single � adjustment should su�ce. Subsequent iterates are capured within aneighborhood such as N 
 (�) and the superlinear convergence follows.Still, it would be more satisfactory to know that the algorithm exhibited thedesired behavior without this identi�cation/adjustment step. Hager [7] describes thebehavior of a variant of stabilized SQP in which the coe�cient � in the stabilizationterm is replaced by a value that is bounded below by a su�ciently large multiple ofdist ((z; �);S). His analysis, which rests partly on perturbation results developed byDontchev and Hager [2], does not require the starting � to be su�ciently far from theboundary of S�. Using a suitably extended second-order su�cient condition (whichrequires essentially that the subspace on which Lzz(z�; ��) is required to be positivede�nite is larger when �� is at a boundary of S�), Hager proves that superlinearconvergence of stabilized SQP is still attainable.Acknowledgments. I am grateful to Bill Hager for helpful discussions andpointers during the preparation of this work.REFERENCES[1] D. P. Bertsekas, Nonlinear Programming, Athena Scienti�c, Belmont, Mass., 1995.[2] A. L. Dontchev and W. W. Hager, Lipschitzian stability for state constrained nonlin-ear optimal control, technical report, Department of Mathematics, University of Florida,Gainesvile, Fl., 1996. To appear in SIAM Journal on Control and Optimization.[3] F. Facchinei, A. Fischer, and C. Kanzow, On the accurate identi�cation of active con-straints, tech. rep., Universita' di Roma \La Sapienza", 1996.[4] R. Fourer and S. Mehrotra, Solving symmetric inde�nite systems in an interior-pointmethod for linear programming, Mathematical Programming, 62 (1993), pp. 15{39.[5] J. Gauvin, A necessary and su�cient regularity condition to have bounded multipliers innonconvex programming, Mathematical Programming, 12 (1977), pp. 136{138.[6] G. H. Golub and C. F. Van Loan, Matrix Computations, The Johns Hopkins UniversityPress, Baltimore, 2nd ed., 1989.[7] W. W. Hager, Convergence of Wright's stabilized SQP algorithm, tech. rep., Department ofMathematics, University of Florida, Gainesville, Fl., January 1997.[8] O. L. Mangasarian and S. Fromovitz, The Fritz-John necessary optimality conditions inthe presence of equality and inequality constraints, Journal of Mathematical Analysis andApplications, 17 (1967), pp. 37{47.[9] D. Ralph and S. J. Wright, Superlinear convergence of an interior-point method for mono-tone variational inequalities, Preprint MCS-P556{0196, Mathematics and Computer Sci-ence Division, Argonne National Laboratory, Argonne, Ill., January 1996. To appear inProceedings of International Conference on Complementarity Problems: Engineering andEconomic Applications and Computational Methods, SIAM, 1997.
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